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Problem statement. The sensors in remote sens-
ing systems are looking through a layer of atmos-
phere separating the sensors from the Earth’s sur-
face being observed. It is essential to understand the
effects of atmosphere on the electromagnetic radia-
tion travelling from the Earth to the sensor through
the atmosphere. The atmospheric constituents cause
wavelength dependent absorption and scattering of
radiation due to environment interactions, emissions
and so on (Fig. 1) [1]. The same problems arise in
the study of coastal shelves associated with under-
water monitoring, as well as with the development
of underwater mineral deposits. Ultrasonic signals
and measuring devices — echo-sounders (Fig. 2)
are used to measure depths, display the profile and
approximate structure of the bottom, search and
classify various objects at the bottom and in the
water column, as well as to perform various nav-
igation tasks [2]. The atmosphere and water envi-
ronment between radiating surface and sensor can
be understood as a wireless communication chan-
nel (CC). The technical conditions of CC during
operation should be considered for the effective
communications. Changes during data transfer can
decrease the rate of data transmission in digital CC
up to stop of transmission. In analog CC it can be
cause distortions and noise of the transmitted sig-
nals. Some of the atmospheric effects can be cor-
rected before the sensing data is subjected to further
analysis and interpretation. These effects degrade
the adequateness of received data. The new methods
and supporting tools are developed to automate the
measurement and consideration of the characteris-
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tics of the CC. It helps to build the information and
mathematical models of nonlinear dynamic object
such as the CC [3-5], i. e. to solve the identification
problem.
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Fig. 2. Sonar monitoring of marine areas

Building Volterra models and using them for visu-
alization for such complex nature effects as waves of
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sea surface were well studied in [6—8]. This methodic
allows building linear and nonlinear models for
different systems. Modern continuous CCs are non-
linear stochastic inertial systems. The model in the
form of integral Volterra series used to identify them
[7; 9-16]. The nonlinear and dynamic properties
of such system are completely characterized by a
sequence of multidimensional weighting functions —
Volterra kernels).

Building a model of nonlinear dynamic system in
the form of a Volterra series lies in the choice of the
test actions form. Also it uses the developed algorithm
that allows determining the Volterra kernels and their
Fourier-images for the measured responses (mul-
tidimensional amplitude—frequency characteristics
(AFC) and phase-frequency characteristics (PFC))
to simulate the CC in the time or frequency domain,
respectively [17-35].

The additional research of new method of non-
linear dynamical systems identification, based on the
Volterra model in the frequency domain is proposed.
This method lies in n-fold differentiation of responses
of the identifiable system by the amplitude of the test
polyharmonic signals. The developed identification
toolkit is used to build information model of the test
nonlinear dynamic system in the form of the first, sec-
ond and third order model [36-47].

The aim of this work is to identify the continuous
CC using Volterra model in the frequency domain,
i. e. the determination of its multi-frequency char-
acteristics on the basis of the data of the input-out-
put experiment, using test polyharmonic signals and
interpolation method to obtain model coefficients
[21-23; 25; 41; 47, 48].

1. Volterra models

Generally, “input-output” type ratio for nonlinear
dynamical system can be presented by Volterra series
[10; 49]: i
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where the n -th partial component of response of
the system is

n[x0]=] . [t )[[x0 -5,
0 0 i=1

x(t) and y(t) are input and output signals of sys-
tem respectively; w,(t,,...,t,) — weight function or

2

n-order Volterra kernel; y, [x(t)] — n-th partial compo-
nent of system’s response; w,(t) — denotes free compo-
nent of the series (for zero initial conditions w,(t)=0);
¢ — current time.

Commonly, the Volterra series are replaced by a
polynomial, with only taking several first terms of
series (1) into consideration. Nonlinear dynamical
system identification in a form of Volterra series con-
sists in n-dimensional weighting functions determi-
nation Ww,(t,,...,7,) for time domain or it’s Fourier
transforms W,(jo,,...,jo,) — n-dimensional transfer
functions for frequency domain.

Multidimensional Fourier transform for n-order
Volterra kernel (1) is written in a form:

W, (o, joo, ) = Fy (W, (T, ) =
e

where F,
j=41.

Then the model of nonlinear system based on Vol-
terra model in frequency domain can be represented as:

y[x(1)]= ZF < (Joy, s Jo, HX Jco> )

where F,'( )— inverse n-dimensional Fourier
transform, it is used here under the condition of varia-
bles association #,=...=t,=t; X (jo,) — Fourier trans-
form of input signal.

Volterra model structured charts in the time and
frequency domain is shown in Fig. 3 and Fig. 4.
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Fig 3. Volterra model structured chart
in the time domain
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Table 1
Numerical values of identification accuracy using approximation method
N m af” e A
) 1 -1 1 -0,5 0,5 1
2 -1 1 0,5 0,5 1
1 -1 1 -0,5 0,5 0,167 0,167 1,333 1,333 3
4 2 -1 1 -0,644 0,644 -0,354 -0,354 2,061 2,061 4,8
3 -1 1 0,5 -0,5 -0,667 0,667 -1,333 1,333 4
1 -08] 1 |-1] -03 | 03 |08] 0,28 | 0,09 |-0,09]-2,13]2,13 ] 0,28 5
6 2 09| -11]09] 04 | 04 | 1 -0,8 | 041 | -0,8 | 4,64 | 4,64 ] 041 11,7
3 03| 1 o8] -08 | -1 [-03]-5461|-1,11]3,44|-3,44] 1,11 ] 5,46 20

Identification of nonlinear system in frequency
domain consists in determination of absolute
value and phase of multidimensional transfer func-
tion at given frequencies — multidimensional AFC
|W,(jo,s-..,jo,)| and PFC argl, (jo,,...,jo,) which are
defined by formulas:

W, (joy, ., jo,) = o
= J[ReW, (..., jo, ) +[IMW, (joy, . jo, )

argW,(joy, ..., jo,) =
Im[VVn(j(Dl, ’]mn)] 5
Re[I’Vn(j(Dl, ~--a.j0‘)n)]

(6)

= arctg

where Re and Im — accordingly real and imaginary
parts of a complex function of n variables respectively.

2. Identification in the Frequency Domain

2.1. An approximation method. Method of iden-
tification of the nonlinear dynamical system based on
Volterra series is offered [21-25; 47]. During the iden-
tification of a Volterra kernel of m-th order significant
effect on accuracy is rendered adjacent terms of a Vol-
terra series. Therefore, it is necessary to apply the spe-
cial methods, allowing minimizing this effect. The idea
of such method lays in construction such expression
of system responses to N (1<m< N) test input signals
with the given amplitudes that with certain accuracy
(accurate within to the thrown terms of order N+1 and
above) would be equal to m-th term Volterra series:

Yulx(®)] = chy[a,X(t)] =

- Z{ical‘)“!w (s [T(=5)ds,

n=l\_j

(7

where @, — amplitudes of test signals, random
nonzero and pairwise different numbers; ¢; — real
coefficients which are chosen in such way that in a
right part of (7) all first N terms are equal to 0, except
m-th, and the multiplier at a m-multiple integral
became equal to 1. This condition leads to a solution
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of the linear algebraic equations system concerning
coefficients ¢, ..., ¢y :

®)
ca’ +cal +..+cyal =0.

This system (8) always has a solution, and the
unique one, as the system determinant differs from
Vandermonde determinant with only a multiplier
8,a,...ay. Thus, with any real numbers a;, that different
from zero and pairwise different, it is possible to find
such numbers ¢; at which the linear combination (7) of
system responses is equal to m—th term of a Volterra
series accurate within to the thrown terms of series.

It is possible to build numberless assemblage of
modes for expressions (7), by taking various numbers
a,...ay and defining (8) coefficients ¢, ..., ¢y by them.

The choice of amplitudes @; should provide the
convergence of series (1) and an minimum error
A during extraction of a partial component y,[x(t)]
according to (7) defined by reminder of series (1) —
terms of degree N+1 and above

N o ® m
> e ylaxt)] = J‘m.t;’;mj‘ W, (t), st [ 20 —7)d7, +
J=1 0 0 i=1

< )
> ylax(t)] = y,[x®)] +A .

N
+ Cj
1 n=N+l

=

If x(%) — is a test effect with maximum admissible
amplitude at which a series (1) converges, amplitudes
a; should be no more than 1 by their absolute values:
laj<1 for V j=1, 2,..., N.

The amplitudes of the test signals a4’ and the
corresponding coefficients ¢’ for responses are
shown in table 1, where m — order of the estimated
Volterra kernel; j — number of the experiment;
N — approximation order, i.e. quantity of identifica-
tion experiments.

2.2. An interpolation method. Identification
method of the nonlinear dynamical system based on
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Table 2
Amplitudes and corresponding coefficients of the interpolation method
n [ N[a®] @ | a [a®] al [a® c,® ) s e e s
20 -1 ] 1 0,5 0,5
1[a]-1]-05] 051 0,0833 | -0,6667 | 0,6667 | -0,0833
6| -1|-067]-033033[067| 1 | -0,0167 | 0,15 -0,75 0,75 0,15 | 0,0167
201 1 1 1
204105 05 | 1 -0,0833 | 13333 | 1,3333 | -0,0833
6| -1]-067]-033033]067] 1 [ 00111 0,15 1,5 1,5 0,15 0,0111
3 41 -11 -05 0,5 1 -0,5 1 -1 0,5
6| -1 ]-067]-033[033[067] 1 | 0,125 -1 1,625 1,625 1 0,125

Volterra series is offered [36—46]. It is used n-fold dif-
ferentiation of a target signal on parameter-amplitude a
of test actions to separate the response of the nonlinear
dynamical system on partial components y, [x(t)].
Affirmation 1. Let at input of system test signal
of ax(t) kind is given, where x(t) — is arbitrary func-
tion and a — is scale coefficient (amplitude of signal),
where 0<|al<1, then for the selection of a partial com-
ponent of the n-th order ¥,(t) from measurement of
the response nonlinear system y[ax(s)] in the form of
Volterra series, it is necessary to determine #-th partial
derivative of the total response amplitude a where a=0

| . [T § E A
k=1

0 times 0
=y [a x(9],_,

We use the method of extracting the partial com-
ponents with the help of n-fold differentiation of the
response y[ax(r)] with respect to parameter — amplitude
a and the use of the derivative value at a=0 [36-38].

Injecting an input signal ax(t) where a is the scal-
ing factor (signal amplitude), one has the following
response of the nonlinear system:

y[a-x(®)]= aT w(z) - x(t —t)dr +

. (10)

+a’

(11)

wy (1), 7,)x(t — 7,)x(¢ — 7,)d7,d7, +

S8

n

+a

S8 S8

@ n
nM4m@Wﬂ%&1mpqgm,hm

To distinguish the partial component of the n-th
order, differentiate the system response # times with

respect to the amplitude:
oyla-x®] e [y e [T - 1), +
oa v n times ) i) ) (12)

0 © n+l
+(n+1)! a}[ . !wn+,(r,,...,rn+,)g x(t —t,)dt, + ...

Taking the value of the derivative at a=0, we finally
obtain the expression for the partial component (7).

Formulas numerical differentiation. Partial deriv-
ative should be substituted by form of finite difference
for calculation. Differentiation of function, which
was set in discrete points, could be accomplished
by means of numerical computing after preliminary
smoothing of measured results. Various formulas for
the numerical differentiation are known, which differ
from each other by means of error.

Let’s use universal reception which allows to sub-
stitute a derivative of any » order for differential ratio
so that the error from such replacement for function
y(a) was any beforehand set order of p approximation
concerning a step of 4=Aa of computational mesh on
amplitude. Method of undetermined coefficient for
equality [50]

@ _ 1 ¢ o yarmyrotn),  (13)

da" h" r=-n r
where the coefficients ¢, are taken not depending
on h, r=-nr,-r+1L..,-10,1,..., -1, 5, so that

equality (13) was fair. Limits of summation » >0 u
r, >0 could be arbitrary, but so that the differential
relation A™") c,y(a+rh) of r +r, order have to sat-
isfy to inequality r +r>2n+p-1..

To define the ¢, it is necessary to solve the follow-
ing set of equations

1 1 17 e, 1 107
- —n+1 n e 0
) e e, (0]
)" Crely o | e nd~ (14)
(7"1)n+] (7"1 +1)n+1 rz”*‘ ¢ 0
Lt eyt gt e |10

If n+r=n+p-1,then inscribed in n+ p equal-
ity forms linear system concerning the same number
of ¢, unknown. The determiner of this system is Van-
dermonde’s determiner and differs from zero. Thus,
there is only one set of n coefficients, satisfying the
system.

If n+r,>n+p, then there are many such sets of
coefficients c, .
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On the basis of (13) in [40] the formulas of deriv-
ative calculation of the first, second and third orders
are received at a=0 with use of the central differences
for equidistant nodes of the computational grid.

In work formulas for numerical differentiation
with use of the central differences for equidistant
assembly are used. Volterra kernel of the first order
is determined by formulas as the first derivative at
r=r=1,r=nr=2o0r r=r=3 respectively

, 1
Yo = ﬁ(_yfl + Y1),

’

Yo (15)

1
= m(yfz -8y, +8y -y,

o1
Vo = m(—y,3 +9y, —45y , + 45y, - 9y, + y,).
Volterra kernel of the first order is determined by

formulas as the first derivativeat ,=r, =1, r,=r, =2
or r, =r =3 respectively

"

1
W= 7(}’71 - 2yo + yl),

h
. 1
Yo = o Y 165, =30y, +16y, - 3,), (16)
Y 1
Yo = W(bﬁ3 —27y, +270y_, — 490y, + 270y, — 27y, + 2y;).

Volterra kernel of the first order is determined
by formulas as the first derivative at r =r =2 or
K =r =3 respectively

1
2
1
8n’

In the formulas written above, we use the follow-
ing notations

Yo =¥10), y5 = y"(0), y5 = y"0); y, = y(rh),r =0,£1,£ 2,43,

where we put y,=0, since identification nonlinear
systems is implemented with zero initial conditions.

The amplitudes of the test signals ¢ and the cor-
responding coefficients ¢ for responses are shown
in Table 2, where n — order of the estimated Volterra
kernel; i — number of the experiment (i=1,2,...,N),
where N=r,+r,, i.e. number of interpolation knots
(number of experiments).

2.3. An approximation model. Is developing a
method of constructing approximate Volterra model of
the NDS [51]. Method identification is based on the
approximation y(t) at an arbitrary deterministic signal
x(t) in the form of integral power of the polynomial
Volterra N-th order (N — order approximation model)

Y= Yy, +2y, -2y, +n),
(17)

o= (s =8y, +13y, =13y, + 8y, — ys).

n

N N % ®
Tu®=29,0=2 . [W,(mt)[[xC-1)dv. (18)
n=1 N=1 0 times 0 i=1
Affirmation 2. Let the input test signals NDS are
fed alternately a,x(t), a,x(t), ,..., a.x(t); a,, a,...,a, —
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distinct real numbers satisfying the condition |a|<I
for Vi=1,2,...,L; then

Tulax1= Y 9, [a,x0) =

n=1

e ].OWn(Tl,...,Tn)ﬁX(t—‘I.'i)d‘ti = iawn(t) (19)

times

The partial components in the approximation
model ¥,(t) are found using the least square method
(LSM). This makes it possible to obtain such eval-
uation in which the sum of squared deviations of
responses identified the nonlinear dynamical system
yla;x(n)] on the model Y, [ax(r)] response is mini-
mal, i.e., NDS provides a minimum criterion

3y =3, xO1- 3,01 =

Z(y,—(t)—iam(t)j Smin |

=1

(20)
where y;(t) = yla,x(t)] . Minimization of the criterion

(20) is reduced to solving the system of normal equations

of Gauss, which in vector-matrix form can be written as

AAy=A"Y, (21)
where
a af a y1(t) AV)
Al B A o (0 o |30
a, al oa) y () u (®)
From (21) we obtain
y=(A'A)"AY (22)
In (8), matrix operations, we obtain
L L L T L 1
. 2a 2ay o xait| | Xay)
AQ) jfl jL:1 jL:1 jfl
Y1) | _ ;af ;a‘j‘ . ;a}“*z ' JZ:}afyj(t) (23
9N(t) N “.N+1 N “.N+Z L“.ZN N N
Zaj Zaj Zaj Zaj y;(t)
L=t j=1 j=1 i L=t i

2.4. Using polyharmonic test signals. The test
polyharmonic effects for identification in the fre-
quency domain representing by signals of such type:

x(1)= 3 A, cos(ayf +4,). (24)

where 7 — the order of transfer function being esti-
mated; A, o, and ¢, — accordingly amplitude, fre-
quency and a phase of k-th harmonics. In research,
it is supposed every amplitude of A, to be equal, and
phases ¢, equal to zero.

For identification in the frequency domain the test
polyharmonic signals are used. We prove:

Affirmation 3. If test polyharmonic signal is used
in form
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x(t)= Akz:cos ol = gé(e’“’k’ + e””k’) , (25

then the n—th partial component of the response of
test system can be written in form:

¥,(t)

An E(n/2) n

DN
m=0

k=1

"'knilw"(_ o -~ Jo, oy, o, ) (26)

m n
. (—kal + Zwk. jt+

1=0 I=m+1

+aran(— o e joy jmkm‘l,...ju)kn)

where E()— function used to obtain the of integer
part of the value [52-54].

The component with frequency ,+...t®, is
extracted from the response to test signal (26):

A" W, (jo,..., jo,) ]| cos[(w, +...+ ®, )t +
+argW, (jo,, ..., jo,)].

Certain limitations should be imposed while
choosing of frequency polyharmonic test signals in
a process determining multidimensional AFC and
PFC. This is the reason why the values of AFC and
PFC in this unallowable points of multidimensional
frequency space can be calculated using interpolation
only. In practical realization of nonlinear dynamical
systems identification it is needed to minimize num-
ber of such undefined points at the range of multi-
dimensional frequency characteristics determination.
This was performed to provide a minimum of restric-
tions on choice of frequency of the test signal. It is
shown that existed limitation can be weakened. New
limitations on choice of frequency are reducing num-
ber of undefined points.

After analyzing the (26) it is defined: to obtain Vol-
terra kernels for nonlinear dynamical system in fre-
quency domain the limitations on choice of frequen-
cies of test polyharmonic signals have to be restricted.
These restrictions provide inequality of combination
frequencies in the test signal harmonics. The theorem
about choice of test signals frequencies is proven.

The theorem about choice of test signals frequen-
cies. For the definite filtering of a response of the har-
monics with combination frequencies ®,+®,+...+®,
within the n-th partial component it is necessary and
sufficient to keep the frequency from being equal
to another combination frequencies of type k,m,+...
+k,m,, where the coefficients {k|i=1, 2, ..., n} must
satisfy the conditions:

1) number K of negative value coefficients (£;<0)
is in 0<K<E(n/2)(where E — function used to obtain
the of integer part of the value);

2) 3 Jk| <
i=1

@27

3) Ylk|=n (mod 2), n-Y || =21, 1 N.
i=1

i=1

It was shown that during determination of multi-
dimensional transfer functions of nonlinear systems
it is necessary to consider the imposed constraints on
choice of the test polyharmonic signal frequencies.
This provides inequality of combination frequencies
in output signal harmonics: ®,#0, ®,#0 and ®,#®,
for the second order identification procedure, and
0,70, 0,70, 0#0, ®,7#0,, 0,703, 0,703, 20,70, F®;,
20,700,105, 20570,T0,, 20,70,—05 20,70 ,—0s,
20,70,—0,, 20,70, 0, 20,70,+®; and 207
,+o, for the third order identification procedure [52].

3. The techniques of test system identification

Described method was tested using nonlinear test
system (fig. 5) represented by Riccati equation

dy(1)

+ay(t) + By*(t) = ut). (28)

dt

1
s+2.64

Outt

Transfer Fcn
Math
Function

<« v —

Fig 5. Simulink-model of the test system

Analytical expressions of AFC and PFC for the
first, second and third order model were received:

NAVORS

> > arng(jco)=—arctgg;
a” + o o

B

@+ 0})(@® + oD)a® + (o + @,)]

| u/z(jwlijz) |: \/

(20’ - 0,0,)(o, + )

argW,(jw,, jo,) = —arct ;
W, jo,) & @ — o) - o, + o)

Wijo s jos)| = [Re(Wiljoy, jor, jo )] + [Im(Wi(jo,, jor, jo)] =
_2p 1

— X
3 \/[az +(o + 0, + @)@ + 0l) (@’ + o)) (@ + o)

B0+ 0+ 0) @+ 010+ 0) (@ + 0@+ )T 160y 0, < )
\/[az2 + (@, + @) [a? + (o, + @) ][a? + (0, + @,)*] ’

DA-CB

AB+CD’

L ImW,(jo,, jo,, jo,)
argW,(jo,, jo,, jo,) = arctg ———2 12207737 — _grety
gW;(jo, jo,, joy) g ReW,(jo, jo,, joo,) g

where
A =3a> - 30,0, - 30,0, - 30,0, — 0] — 0} —©; ; B=uw-vz,;
C=40(0, + w0, +w,); D=vw+uz,
u=0a’-ano, - a0, - a(o, + o, + 0,);v = (0, + 0, + 0,)(2a* - 0,0, - ©,0,);
w=(a’ - 0,0, - 0,0,)(@° — 0,0, — 0,0;) -’ (o + 0, + ©,);
7 =alo, + o, + 0,)2a* - 20,0, — 0,0, — ©,0;).

The main purpose was to identify the multi—
frequency performances characterizing nonlinear
and dynamical properties of nonlinear test system
[11-21]. Volterra model in the form of the 1%, 2
and 3" order polynomial is used. Thus, test system
properties are characterized by transfer functions of
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W,(jo), W,y(jo,, jo,), Ws(jo,,jo,,jo,) — by Fourier-im-
ages of weight functions w,(t), w,(t,,t,) and ws(t,,t,.t,).

Structure charts of identification procedure —
determinations of the 1", 2" and 3™ order AFC of CC
are presented accordingly in fig. 6-8.

The weighted sum is formed from received sig-
nals — responses of each group from fig. 6-8. As a
result the partial components of CC responses y;(t),
1,(t) and y,(t) are got. For each partial component
of response the Fourier transform (the FFT is used)
is calculated, and from received spectrum only an
informative harmonics (which amplitudes represent
values of required characteristics of the first, second
and third orders AFC) are taken.

The first order AFC |[W¥,(jo)| and PFC argl,(jo) is
received by extracting the harmonics with frequency
o from the spectrum of the CC partial response y,(t)
to the test signal x(t)=(A/2)cos(wt).

The second order AFC |7, (jo, j(0+Q,))| and PFC arg-
W,(jo, j(0+Q,)) having ®,=® and ®,=n+Q, were received
by extracting the harmonics with summary frequency
®,+®, from the spectrum of the CC partial response y(t)
to the test signal x(t)=(A/2)(cos(w,t)+cos(w,t)).

The third order AFC |W;(jo, j(0+£)), j(0+£,))|
and PFC argl,(jo, j(0+Q,), j(0+Q,)) having o,=o,
0,=0+Q, and w;=0+C,, were received by extracting
the harmonics with summary frequency o,+m,tw,
from the spectrum of the CC partial response y(t) to
the test signal x(t)=(A/2)(cosm,t+cosm,t+cosmst).

The results (first, second and third order AFC and
PFC which had been received after procedure of iden-
tification) are represented in fig. 9—11.

L)

(]
], Y ],
(.r" CC CI
N0
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Fig 6. The structure chart of identification using 1st
order Volterra model in frequency domain, number of
experiments N=4: al=-2h, a2=-h, a3=h, a4=2h;
cl=-1/12, ¢2=-2/3, ¢3=2/3, c4=1/12

; N
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2 v,
x(f) =§cnsm‘ t ([2(3) il e |2 CZ(Z} - 0
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Fig. 7. The structure chart of identification using 2nd
order Volterra model in frequency domain, number of
experiments N=4: al=-2h, a2=-h, a3=h, a4=2h;
cl1=-1/12, c2=4/3, ¢3=4/3, c4=-1/12
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Fig. 8. The structure chart of identification using 3rd
order Volterra model in frequency domain, number of
experiments N=6: al=-3h, a2=-2h, a3=-h, a4=h, a5=2h,
a6=3h; c1=-1/8, c2=-1, ¢3=13/8, c4=-13/8, ¢5=1, c6=1/8
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Fig. 9. First order AFC and PFC of the test system:

analytically calculated values (1), section estimation
values with number of experiments for the model N=4 (2)
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Fig. 10. Second order AFC and PFC of the test system:
analytically calculated values (1), sub-diagonal
cross-section values with number of experiments
for the model N=4 (2), Q,=0,01 rad/s

Numerical values of identification accuracy using
interpolation method for the test system are repre-
sented in table 3, where: n — order of the estimated
Volterra kernel, N — approximation order/number of
interpolation knots (number of experiments).
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Table 5
Standard deviation for interpolation method with noise impact (bold font shows the best values)
Noise level = 10% Noise level = 1% Improvement
n | N | SDforAFC | SD for PEC__ | SD for AFC | SD for PFC for AFC, times | for PFC, times
(without / with denoising)
0,000097 / 0,09031 /
2 0,000063 0,07541 - - 1,540 1,198
0,000271 / 0,07804 /
b4 0,000181 0,06433 - - 1,497 1,213
0,000312/ 0,12913/
6 0,000223 0.09889 - - 1,399 1,306
0,000920 / 0,52063 /
2 0,000670 0,51465 - - 1373 1,012
0,001972/ 0,28004 /
2|4 0,001663 0,06877 - - 1186 4,072
0,004165/ 0,39260 /
6 0,003908 0.19237 - - 1,066 2,041
0,000288 / 0,89857 /
5 4 - - 0,000288 0,61251 1,003 1,467
0,000461 / 0,84868 /
6 - - 0,000352 0,59319 1310 1431
Fourier Image Absolute Value (AFC) . . . . Table 3
T o Numerical values of identification accuracy
500 hY —2 using interpolation method
EMZ \ n N | AFC relative error, % | PFC relative error, %
oo 2 2,1359 2,5420
% 1 2 3 4 5 6 7 1| 4 0,3468 2,0618
Frequency, rad/s
's i PFC 6 0.2957 1,9311
ors N DN = 2 30,284 76,822
i, 1 [ et N 2 | 4 2,0452 3,7603
EN 6 89,209 5,0438
s\ 2 5 4 10,981 1,628
"o (N ooty © 6 T 6 10,764 1,5522

Fig. 11. Third order AFC and PFC of the test system:
analytically calculated values (1), sub-diagonal cross-
section values with number of experiments for the
model N=6 (2), Q,=0,01 rad/s, Q,=0,1 rad/s

Comparison of the numerical values for identifica-
tion accuracy using interpolation method [22—23] and
approximation one [21; 25; 42; 46] for the test system
is presented in table 4.

4. The study of noise immunity of the identifi-
cation method

Experimental researches of the noise immunity
of the identification method were made. The main
purpose was the studying of the noise impact (noise
means the inexactness of the measurements) to the
characteristics of the test system model using interpo-
lation method in frequency domain.

l ,'If'\\'. II.'r 2 \I‘ .'ﬂ'n II.'r .\", ll "-"‘.' 3 I - :: .,"i. Fdr rpl;l M

L 10 } l_ ']H | n r;‘-.J T - \’ﬂ, .J h Iy H #\I '
" i_||:|lll I'|‘| IIII ',I .'II ',III I|' Il'lé | ! [‘ I |1 | v ( _.,.IU |‘1| IP[ \ J|J,I ]Iﬂl |'J '|i
. :I-} 1[] I‘Jll : 0 l\-llll ‘h \-lliil ‘E -“"hl;. - |I? B W ] - W ) ‘; i :Ol.' |-ﬂ W ) 'I‘J f‘.l 'IEI - T:" ‘:

Fig. 12, a —Test signal and; » — Random noise with 25% amplitude of test signal;
¢ — The “noised” signal of the test system
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Fig. 13. The Daubechies 2nd level scaling (1)
and wavelet (2) functions

After that procedure the Random Noise signal
(with the form shown in fig. 12, b) where added to the
test system output signal. This steps where performed
to simulate inexactness of the measurements in the
model. The sum of these two signals for the linear test
model signal is shown in fig. 12, c.
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Table 4

Identification accuracy using approximation

and interpolation methods

AFC relative error, % | PFC relative error, %
n | N | Approxi- | Interpola- | Approxi- | Interpola-
mation tion mation tion
2 3,6429 2,1359 3,3451 2,5420
114 1,1086 0,3468 3,1531 2,0618
6 0,8679 0,2957 3,1032 1,9311
2 | 26,0092 30,2842 30,2842 76,8221
2| 4| 3,4447 2,0452 2,0452 3,7603
6 7,3030 89,2099 4,6408 5,9438
3 4 | 72,4950 10,981 10,9810 1,628
6 | 74,4204 10,7642 10,7642 1,5522

The simulations with the test model were per-
formed. Different noise levels were defined for dif-
ferent order of the Volterra model.

The adaptive wavelet denoising was used to
reduce the noise impact on final characteristics of the

AFC

—
os I 15 2 25 3 L} ) 45 5
Frequency, radis
PFC
T T T
B e T e e e
R D e
i i i
005 1 15 5 3 ]
Fraquency, radls

Fig. 14. Noised (a) and denoised (b) characteristics (AFC — top, PFC — bottom)

of the 1st order model of the test system with level of noise 25%
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Fig. 15. Noised (a) and denoised (b) characteristics (AFC — top, PFC — bottom)
of the 2nd order model of the test system with level of noise 10%
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Fig. 16. Noised (a) and denoised (b) characteristics (AFC — top, PFC — bottom)
of the 3rd order model of the test system with level of noise 1%
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Fig. 17. Standard deviation changing for AFC using
adaptive Wavelet-denoising
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Fig. 18. Standard deviation changing for PFC using
adaptive Wavelet-denoising

test system [55—60]. The Daubechie wavelet of the
2 and 3 level was chosen (fig. 13) and used for the
AFC and PFC denoising respectively.

The first order (linear) model was tested with the
level of noise 25% and 10% and showed excellent
level of noise immunity. The noised (fig. 14, a) and
de-noised (filtered) (Fig. 14, b) characteristics (AFC
and PFC) with level of noise 25% are presented.

The second order (nonlinear) model was tested
with the level of noise 10% and 1% and showed good
level of noise immunity. The noised (fig.15, a) and
de-noised (filtered) (fig. 15, b) characteristics (AFC
and PFC) with level of noise 10% are presented.

The third order (nonlinear) model was tested with
the level of noise 10% and 1% and showed good
level of noise immunity. The noised (fig. 16, a) and
de-noised (filtered) (fig.16, b) characteristics (AFC
and PFC) with level of noise 1% are presented.

The numerical values of standard deviation (SD)
of the identification accuracy before and after wavelet
denoising procedure are presented in Table 5.

The diagrams showing the improvement of stand-
ard deviation for identification accuracy using the
adaptive wavelet denoising of the received character-
istics (AFC and PFC) are shown in fig. 17 and fig. 18
respectively [61-62].

5. Enginering software tools

The identification methodology is implemented
with approximation and interpolation methods. The
structured scheme of the computational process of the
identification procedure is shown in the fig. 19 [63—65].

The hardware platform of the experimental
researches using developed software consists of
IBM-PC compatible computer with two soundcards
(Fig. 20). This allows characterizing the final results
as reliable ones. Onboard soundcards (motherboard
built-in) has much worst characteristics and higher
unevenness of its AFC. Thus, it cannot be used in
experimental researches.

The toolkit is organized from software in Matlab lan-
guage. The first part is assigned for test signals genera-
tion with minimal impact of the operation system of used
PC. The experimental results processing is implemented
in the second part. The 13 modules were developed dur-
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Fig. 19. Structured scheme of the computational process of the identification procedure
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Fig. 20. The general scheme of the experiment

ing the software part implementation. The structured
scheme of the software toolkit for nonlinear dynamical
systems identification is shown in fig. 21. The imple-
mented in module main_gui.fig visual interface contains
all visual components of the windows application used
to control the parameters of the experiment (fig. 22).

An initialization of the identification process
parameters of the nonlinear system being identified
is performed in the main module (main_form.m). The
list of those parameters:

1) start frequency f, of harmonic signals for the
experiment;

2) quantity of the experimental steps (defines the
quantity of the subdiagonal sections of the AFC and
the final frequency of the experiment);
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Fig. 21. The structured scheme of the software for
nonlinear dynamical systems identification

3) polyharmonic test frequency step;

4) quantity of the experiments repeats that allows
to average results received for current nonlinear
object;

5) quantity of the signal samples being sent to the
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Fig. 22. Part of the main window of the software used for standard
characteristics constructing (subdiagonal sections and 3D surfaces)

nonlinear dynamical system input (this number have
to be divisible by 2 to obtain correct work on the Fast
Fourier Transform);

6) sampling frequency of the sound signal being
sent to the nonlinear dynamical system input;

7) kernel order for the Volterra model;

8) approximation order/experiments quantity for
the approximation/interpolation method of the coeffi-
cients calculation and experiments providing;

9) shift between the frequencies f, and f
for the polyharmonic test signals (for nonlinear
models);

10) shift between the frequencies f; and f, for the
polyharmonic test signals (for nonlinear models);

11) amplitudes array for the mono- or polyhar-
monic test signals (depends on model order);

12) corresponding coefficients array calculated
using amplitudes of the test signals;

13) time array for sound test signal forming;

14) response array (consists of the values of tested
nonlinear dynamical system responses to the test har-
monic signal);

15) AFC array (consists AFC points values of
tested nonlinear dynamical system).

The coefficients for identification during the form-
ing the test signals are depending on its amplitudes.
The calculation of such coefficients is performed by
the matrix method of SLAE decision and it’s per-
formed in calc coef module. One of the identifica-
tion modules of the chosen order (ident 1, ident 2,
ident 3) begins working after starting the identifica-
tion process. In common way:

— the test harmonic signals with selected ampli-
tudes (depending on method) are generated;

— generated signals data arrays are sent to the input
of the nonlinear system;

— the signals received after nonlinear system has
the visual form shown in fig. 23 and they have to be
preprocessed (multiplication the signals and output
coefficients);

— the total (sum) response of all test signals is cal-
culated;

— the points of AFC array for the responses of the
system being identified are calculated,

— the data received during identification at the cur-
rent frequency step is saved to the file.

The identification method is organized using the
approximation and interpolation method [62]. The
identification of the nonlinear system of the 1* order
is presented as textual algorithm:

Step 1. The main module (main_form.m) sending
the parameters of the identification to the module
ident I.m.

Step 2. All supporting local variables and arrays
are initialized.

Step 3. The loop for experiment repetitions with
selected iterations.

Step 3.1. The loop for changing the test frequency
from start value with selected step for the selected
quantity of steps (specified in parameters of the iden-
tification).

Step 3.1.1. The f, frequency increment at current
experiment step.

Step 3.1.2. The test harmonic signal generating.
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Step 3.1.3. Searching for the f; frequency position
in signal spectra.

Step 3.1.4. The loop for each test signal amplitude
in the experiment.

Step 3.1.4.1. The signal with specified amplitude
is forming.

Step 3.1.4.2. The formed signal is sending to the
output of the soundcard.

Step 3.1.4.3. The signal is receiving from the input
of the soundcard.

Step 3.1.4.4. The multiplication of the received
signal data (response) with specified amplitudes by
corresponding coefficients.

Step 3.1.4.5. The total response calculation by
summation of received signals groups.

Step 3.1.4.6. 1f the selected method is interpola-
tion then performing division of the total response by
additional method coefficient.

Step 3.1.4.7. Calculating the signal spectra using
Fast Fourier Transform.

Step 3.1.4.8. Calculating the value of informational
harmonics with position detected at the Step 3.1.3.

Step 3.1.4.9. Calculating the AFC and amplitude
correction.

Step 3.1.5. Saving the experimental data in files as
arrays with identification results for the frequency f,.

To save the data of the identification results for sub-
sequent system model in frequency domain building
the m-files are used. The names of those files are fully
showing the parameters of the experiment. The files are
saved at the Results subfolder of the program folder.

The format of file name with identification data
of the test model allowing cataloging results looks
as Vn(N) Na meth nc mad mke wl f-g-h dwl
i w2 j .mat and consists of such fields:

n —model (Volterra kernel) order;

N — approximation order;

a — discretization order;

b —method (1 — interpolation, 0 — approximation);

¢ —noise level (in % relatively to test signal level);

d — scaling the test signals amplitudes relatively to
initial (in %);

e — scaling the test signals coefficients relatively
to initial (in %);

f— start frequency f; value;

g — step of the frequency f; changing;

h — final value of the frequency f;;

i — shifting between the frequencies f, and f;;

j — the value of the frequency f;.

The format of file name with identification data
of the real communication channel allowing cata-
loging results looks as Final xxxx yyyy zzzz Vk-N_
mm-dd-yy HH-MM-SS.mat and consists of such fields:
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xxxx — start frequency of the current experiment
(section);

yyy — shift between the frequencies f, and f;;

zzz — the value of the frequency f;;

n —model (Volterra kernel) order;

N — approximation order;

mm-dd-yy HH-MM-SS — current date and time in
selected format.

On the results of the identification data contained in
the files, it is possible to draw two-dimensional plots
(module sections vis.m) — subdiagonal AFC sections
of the nonlinear dynamical system. A 3-dimensional
plots (modules surf vis.m, plotter.m) — surfaces are
built of the subdiagonal AFC sections of the nonlin-
ear dynamical system by changing shifting between
the frequencies f, and f; and changing frequency f; for
the 2™ and 3™ order models respectively.

6. The technique and hardware-software tools
of radiofrequency CC identification

Experimental research of the Ultra High Frequency
range CC were done [66]. The main purpose was the
identification of multi-frequency characteristics that
characterize nonlinear and dynamical properties of the
CC. Volterra model in the form of the second order pol-
ynomial is used. Thus physical CC properties are char-
acterized by transfer functions of W,(j2nf), W,(j2xf,.-
j2nf,) and Wy(j2nf,,j2nf,.j2nf;) — by the Fourier-images
of weighting functions w(t), w,(t,, t,) and wy(t,, t,, ;).

Implementation of identification method on the
IBM PC computer basis has been carried out using
the developed software in Matlab software. The soft-
ware allows automating the process of the test signals
forming with the given parameters (amplitudes and
frequencies). Also this software allows transmitting
and receiving signals through an output and input
section of PC soundcard, to produce segmentation of
a file with the responses to the fragments, correspon-
ding to the CC responses being researched on test
polyharmonic effects with different amplitudes.

In experimental research two identical marine trans-
ceivers S.PRADIO A/S SAILOR RT2048 VHF (the range
of operational frequencies is 154,4-163,75 MHz) and IBM
PC with Creative Audigy 4 soundcards were used. Sequen-
tially AFC of the first and second orders were defined. The
method of identification with number of experiments N=4
was applied. Structure charts of identification procedure —
determinations of the 1%, 2™ and 3" order AFC of CC are
presented accordingly in fig. 6 —fig. 8.

The CC received responses y[ax(#)] to the test
signals a,x(¢) , compose a group of the signals, which
amount is equal to the used number of experiments
N (N=4), shown in fig. 23. In each following group
the signals frequency increases by magnitude of cho-
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sen step. A cross-correlation was used to define the
beginning of each received response.

Maximum allowed amplitude in described exper-
iment with use of sound card was A=0,25V (defined
experimentally). The range of frequencies was defined
by the sound card pass band (20...20000 Hz), and
frequencies of the test signals has been chosen from
this range, taking into account restrictions specified
above. Such parameters were chosen for the exper-
iment: start frequency f=125 Hz; final frequency
f=3125 Hz; a frequency change step F=125 Hz; to
define AFC of the second order determination, an off-
set on frequency F,=f,-f; was increasingly growing
from 201 to 3401 Hz with step 100 Hz.
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Fig. 23. The group of signals received from CC
with amplitudes: -1 (1); -1/2 (2); 1/2 (3); 1 (4); N=4
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Maximum allowed amplitude in described exper-
iment with use of sound card was A=0,25V (defined
experimentally). The range of frequencies was defined
by the sound card pass band (20...20000 Hz), and fre-
quencies of the test signals has been chosen from this
range, taking into account restrictions specified above.
Such parameters were chosen for the experiment: start
frequency f=125 Hz; final frequency f=3125 Hz; a
frequency change step F=125 Hz; to define AFC of
the second order determination, an offset on frequency
F,=f,-f, was increasingly growing from 201 to 3401 Hz
with step 100 Hz.

The weighed sum is formed from received signals —
responses of each group (fig. 6, fig. 7). As a result we get
partial components of the response of the CC y,(t) and y,(t).
For each partial component of the response a Fourier trans-
form (the Fast Fourier Transform is used) is calculated.
Only informative harmonics (which amplitudes represents
values of required characteristics of the first, second and
third order AFC) are taken from received spectrum.

The first order amplitude-frequency characteristic
|W,(i27f)| is received by extracting the harmonics with
frequency f from the spectrum of the partial response of
the CC y,(t) to the test signal x(ty=(A/2)cos2mfi.

The second order AFC |W,(j2xf,, j2nf,)|, where f=f
and f=f+F, was received by extracting the harmonics
with summary frequency f,+f, from the spectrum of the
partial response of the CC y,(t) to the test signal x(t)=(A/2)
(cos2nf t+cos2mfit).

The third order AFC |W,(j2nf,, j2nf,, j2nf;)|, where
=1, f=f+F, and f=127,5 Hz were received by extracting
the harmonics with summary frequency f,+£+f; from the
spectrum of the partial response of the CC yy(t) to the test
signal x(ty=(A/2)(cos2mf,t+cos2naf,t+cos2mft) (fig. 8).

The wavelet noise-suppression was used to smooth
the output data of the experiment [9]. The results received
after digital data processing of the data of experiments
(wavelet “Coiflet” denoising) for the first, second and
third order AFC are presented in fig. 24 —fig. 27.

The surfaces shown in fig. 26 — fig. 27 are built from
sub-diagonal sections that are received separately. We
used F, as growing parameter of identification with dif-

ferent value for each section.
"\
02 \
|

[ (2af)]
0,25

0,1

|

|

|

|

|

I

I

|

I

|

0,05 :

|

| I

J |

L E | 1
% =0 w0 1000 1500 2000 2500 3000 3250 f Hz

k Je

Fig. 24. AFC of the first order after wavelet “Coiflet”
2nd level noise-suppression
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Fig. 25. Subdiagonal sections of AFCs of the second
order after wavelet “Coiflet” 2nd level noise-
suppression at different frequencies F1: 201 (1),
401 (2), 601 (3), 801 (4), 1001 (5), 1401 (6) Hz
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Fig. 27. Surface built of AFCs of the third order
after wavelet “Coiflet” 3rd level noise-suppression,
where £3=127,5 Hz

Conclusions

Communication channel as a media for remote
sensing systems functioning is analyzed. Nonlin-
ear effects of the environments have great impact

on result data received in experiments. The method
based on Volterra model using polyharmonic test sig-
nals for identification nonlinear dynamical systems
is analyzed. To differentiate the responses of system
for partial components we use the method based on
linear combination of responses on test signals with
different amplitudes.

New values of test signals amplitudes were defined
and they are greatly raising the accuracy of identifica-
tion compared to amplitudes and coefficients written
in [16]. The accuracy of identification of nonlinear
part of the test system growth 2 times and the stand-
ard deviation in this case is about 5%.

The interpolation method of identification using
the hardware methodology written in [62] is applied
for construction of informational Volterra model as
an APC of the first and second order for UHF band
radio channel.

Received results reveal essential nonlinearity of
the CC that leads to distortions of signals in radio
broadcasting devices, reduces the important indica-
tors of the TCS: accuracy of signals reproduction,
throughput, noise immunity.

The noise immunity is very high for the linear
model, high enough for the second order nonlinear
model and has moderate noise immunity for the third
order model. The wavelet denoising is very effective
and gives the possibility to improve the quality of
identification of the noisy measurements up to 1,54
and 4,07 times for the AFC and PFC respectively.

Final characteristics of the CC have to be used to
maintain sensor systems to improve the adequateness
of received data.
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METO/IM TA IHCTPYMEHTAJIbHI 3ACOBY IJIEHTU®IKAIIT HEJTHIHHAX
JAHAMIYHAX CUCTEM HA OCHOBI MOJEJEA BOJIBTEPPU B YACTOTHIM OBJIACTI

Jocnioacyemovces mounicms ma 0OUUCTIOBAIbHA CMIUKICINb Meno0ie demepMiHo8anol ioenmugbikayii Heni-
HIUHUX OUHAMIYHUX cucmeM y 8ueniaoi 0a2amosuMipHux amniimyoHo- i (hazouacmomuux XapaKmepucmux.
Pozensoaromuca anpoxcumayitinutl ma inmepnoasiyiiHuil Memoou ioenmughikayii' 3 UKOPUCMAHHAM MeCcmo-
8UX nonieapMoniunux cueHanie. QouucnosarvHa cmitikicmes npoyedypu ioenmudgbikayii 3abe3neuyemscsi 3a
00NOMO2010 MEmMOOy pe2ylApU3ayii HeKopeKmuux 3a0ay. /s 3ena0xicysanis OYiHoK OMmpumManux XapaKmepuc-
MUK BUKOPUCTNOBYEMbCL 8eliBNIem-Qinompayis.

Knrouosi cnoea: neninilini Ounamiyni cucmemu, Henapamempuyna ioenmucghikayis, mooenvs Bonomeppu,
OacamosuUMIpHI 4aCMOMHI XAPAKMEPUCTIUKU, NOTIZAPMOHIUHI CUSHAIU, pe2YIApU3ayis, eetignen-@iibmpayis.

METOAbl U HTHCTPYMEHTAJIBHBIE CPEACTBA UJIEHTU®UKAIIUA
HEJUHEWHBIX TMHAMHUYECKHUX CUCTEM HA OCHOBE MOJIEJIEM BOJIBTEPPBI
B YACTOTHOM OBJIACTH

Hccnedyemes mounocmsv 1 8bIMUCIUMENbHAS YCIMOUYUBOCIb MEMOO08 0emMepMUHUPOBAHHOU UOeHMUDU-
Kayuu HeTUHEUHbIX OUHAMUYECKUX CUCEM 6 8U0e MHO2OMEPHBIX AMNAUMYOHO- U (a304acmomHblx Xapak-
mepucmux. Paccmampusaiomes annpoKCUMAyUOHHbLIL U UHMEPNOTSAYUOHHBIL Memoobl UOeHMUDUKAYUU ¢
UCNONB308AHUEM MECMOBLIX NONUSAPMOHUYECKUX CUSHAN08. Bovluuciumenvhas ycmouuugocms npoyedypol
uoeHmugurayuu 00ecnewusaemcs ¢ NOMOWbI0 Memood pe2yisapu3ayuu HeKOPPEeKMHuIX 3a0ay. [l cenaicu-
BAHUSL OYEHOK NOJLYUEHHbIX XAPAKMEPUCTIUK UCHOIb3YEMCsl 6eUeNem-Quibmpayusi.

Knrouesvle cnosa: Henunelinvle OUHAMUYECKUE CUCTEMbL, HENAPAMEMPU1EeCKas u0eHmupurayus, Mooein
Bonemeppwi, MHo2oMepHble uacmomHble XapakmepucmuKu, NOIUSAPMOHUYECKUE CUSHATIbL, pe2ylsapu3ayus,
selsrem-puibmpayusi.

06 Tom 30 (69) Y. 1N2 12019



